Flatness of semilinear parabolic PDEs - A generalized Chauchy-Kowalevski approach
نویسندگان
چکیده
A generalized Cauchy-Kowalevski approach is proposed for flatness-based trajectory planning for boundary controlled semilinear systems of PDEs in a one-dimensional spatial domain. For this, the ansatz presented in [16] using formal integration is generalized towards a unified design framework, which covers linear and semilinear PDEs including rather broad classes of nonlinearities arising in applications. In addition, an efficient semi-numerical solution of the implicit state and input parametrizations is developed and evaluated in simulation scenarios. Simulation results for various types of nonlinearities and a tubular reactor model described by a system of semilinear reaction-diffusion-convection equations illustrate the applicability of the proposed method.
منابع مشابه
A review of stability and error theory for collocation methods applied to linear boundary value problems
An analysis of discretizations of the Helmholtz equation in L 2 and in negative norms (extended version) Flatness of semilinear parabolic PDEs-A generalized Chauchy-Kowalevski approach 27/2012 R. Donninger and B. Schörkhuber Stable blow up dynamics for energy supercritical wave equations 26/2012 P.
متن کاملFlatness of Semilinear Parabolic PDEs - A Generalized Cauchy-Kowalevski Approach
A generalized Cauchy-Kowalevski approach is proposed for flatness-based trajectory planning for boundary controlled semilinear systems of PDEs in a one-dimensional spatial domain. For this, the ansatz presented in [16] using formal integration is generalized towards a unified design framework, which covers linear and semilinear PDEs including rather broad classes of nonlinearities arising in ap...
متن کاملNumerical Blow-up of Semilinear Parabolic PDEs on Unbounded Domains in ℝ2
We study the numerical solution of semilinear parabolic PDEs on unbounded spatial domains in R2 whose solutions blow up in finite time. Of particular interest are the cases where = R2 or is a sectorial domain in R2. We derive the nonlinear absorbing boundary conditions for corresponding, suitably chosen computational domains and then employ a simple adaptive time-stepping scheme to compute the ...
متن کاملHomogenization of periodic semilinear parabolic degenerate PDEs
In this paper a second order semilinear parabolic PDE with rapidly oscillating coefficients is homogenized. The novelty of our result lies in the fact that we allow the second order part of the differential operator to be degenerate in some part of Rd . Our fully probabilistic method is based on the deep connection between PDEs and BSDEs and the weak convergence of a class of diffusion processe...
متن کاملSolving the inverse problem of determining an unknown control parameter in a semilinear parabolic equation
The inverse problem of identifying an unknown source control param- eter in a semilinear parabolic equation under an integral overdetermina- tion condition is considered. The series pattern solution of the proposed problem is obtained by using the weighted homotopy analysis method (WHAM). A description of the method for solving the problem and nding the unknown parameter is derived. Finally, tw...
متن کامل